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Abstract
Wick-type stochastic generalized KdV equations are researched. By using
the homogeneous balance, an auto-Bäcklund transformation to the Wick-
type stochastic generalized KdV equations is derived. And stochastic single
soliton and stochastic multi-soliton solutions are shown by using the Hermite
transform.

PACS numbers: 02.30.Ik, 02.30.Jr, 02.50.Fz, 05.45.Yv

1. Introduction

In this paper we will give exact solutions of Wick-type stochastic generalized KdV equations
in the following form:

Ut + G1(t) � [6U � Ux + Uxxx] + 6F1(t) � U = x[F ′
1(t) + 12F1(t)

�2 � G1(t)] (1.1)

where F1(t) = [f (t) + K1B(t)] and G1(t) = g(t) + K2W(t), f (t) and g(t) are square
integrable or bounded functions of t, B(t) is a Brownian motion, W(t) is Gaussian white
noise, i.e. W(t) = Ḃ(t),K1 and K2 are some constants. In fact, we hope to give exact
solutions of generalized KdV equations with random coefficients B(t) and/or W(t), in this
case f (t) = g(t) = 0.

(1.1) is the perturbation of the coefficients f (t) and g(t) of the generalized KdV equation

ut + g(t)[6uux + uxxx] + 6f (t)u = x[f ′(t) + 12g(t)f 2(t)] (1.2)

by K1B(t) and K2W(t), respectively. (1.2) was discussed by M L Wang et al in [13]. They
gave the exact solutions of (1.2) by using the homogeneous balance principle which was
given by M L Wang in [11]. The homogeneous balance method has been widely applied
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to derive the nonlinear transformations and exact solutions (especially the solitary waves),
and auto-Bäcklund transformations as well as the similarity reductions of nonlinear PDEs
in mathematical physics. These subjects have been researched by many authors, such as
M L Wang [11], M L Wang and Y M Wang [12], M L Wang et al [13], E G Fan [6, 7], etc.

Random waves are an important subject of stochastic partial differential equations. Now,
stochastic KdV equations have been studied by many authors. As far as we know they are
A de Bouard and A Debussche [2, 3], A Debussche and J Printems [4, 5], V V Konotop
and L Vźquez [9], J Printems [10], Y C Xie [14, 15] and so on. In [8], H Holden et al
gave the white noise functional approach to research stochastic partial differential equations
in Wick versions. As Xie did in [14] and [15], we will use the white noise method to give
auto-Bäcklund transformations and exact solutions of Wick-type stochastic generalized KdV
equation (1.1).

2. SPDEs driven by white noise

In this section we will summarize the main matters for stochastic partial differential equations
which use the white noise functional approach. Please see H Holden et al’s book [8] for
details.

Let hn(x) be the Hermite polynomials. Put ξn(x) = e− 1
2 x2

hn(
√

2x)/(π(n − 1)!)1/2,

n � 1. We have that the collection {ξn}n�1 constitutes an orthogonal basis for L2(R) and
supx∈R |ξn(x)| = O

(
1

n1/12

)
.

If we denote α = (α1, . . . , αd) being d-dimensional multi-indices with α1, . . . , αd ∈ N,
we have that the family of tensor products ξα = ξ(α1,...,αd ) = ξα1 ⊗ · · · ⊗ ξαd

(α ∈ Nd) forms
an orthogonal basis for L2(Rd). Let α(i) = (

α
(i)
1 , . . . , α

(i)
d

)
be the ith multi-index number in

some fixed ordering of all d-dimensional multi-indices α = (α1, . . . , αd) ∈ Nd . We can, and
will, assume that this ordering has the property that

i < j ⇒ α
(i)
1 + · · · + α

(i)
d � α

(j)

1 + · · · + α
(j)

d .

Now define

ηi = ξα(i) = ξ
α

(i)
1

⊗ · · · ⊗ ξ
α

(i)
d

i � 1.

We denote multi-indices as elements of the space
(
NN

0

)
c

of all sequences α = (α1, α2, . . .)

with elements αi ∈ N0 and with compact support, i.e. with only finitely many αi �= 0. We
denote J = (

NN
0

)
c
. For α = (α1, α2, . . . , ) ∈ J , we define

Hα(ω) =
∞∏
i=1

hαi
(〈ω, ηi〉) ω ∈ (S(Rd))∗.

With n ∈ N, let (S)n1 consist of those x = ∑
α cαHα ∈ ⊕n

k=1 L2(µ) with cα ∈ Rn

such that ‖x‖2
1,k = ∑

α c2
α(α!)2(2N)kα < ∞,∀k ∈ N with c2

α = |cα|2 = ∑n
k=1

(
c(k)
α

)2
if

cα = (
c(1)
α , . . . , c(n)

α

) ∈ Rn. where µ is the white noise measure on (S∗(R),B(S∗(R))), α! =∏∞
k=1 αk! and (2N)α = ∏

j (2j)αj for α = (α1, α2, . . . , ) ∈ J , where (S(Rd)) and (S(Rd))∗

are the Hida test function space and the Hida distribution space on Rd , respectively.
The space (S)n−1 consists of all formal expansions X = ∑

α bαHα with bα ∈ Rn such that
‖X‖−1,−q = ∑

α b2
α(2N)−qα < ∞ for some q ∈ N. The family of seminorms ‖x‖1,k, k ∈ N

gives rise to a topology on (S)n1, and we can regard (S)n−1 as the dual of (S)n1 by the action

〈X, x〉 =
∑

α

(bα, cα)α!

and (bα, cα) is the usual inner product in Rn.
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For X = ∑
α aαHα, Y = ∑

α bαHα ∈ (S)n−1 with aα, bα ∈ Rn

X � Y =
∑
α,β

(aα, bβ)Hα+β

is called the Wick product of X and Y.
We can prove that the spaces (S(Rd)), (S(Rd))∗, (S)1 and (S)−1 are closed under Wick

products.
For X = ∑

α aαHα ∈ (S)n−1 with aα ∈ Rn, the Hermite transform of X, denoted by H(X)

or X̃, is defined by

H(X) = X̃(z) =
∑

α

aαzα ∈ Cn (when convergent)

where z = (z1, z2, · · ·) ∈ CN (the set of all sequences of complex numbers) and zα =
z
α1
1 z

α2
2 · · · zαn

n · · · for α = (α1, α2, · · ·) ∈ J .
For X, Y ∈ (S)N−1, by this definition we have

X̃ � Y (z) = X̃(z) · Ỹ (z)

for all z such that X̃(z) and Ỹ (z) exist. The product on the right-hand side of the above formula
is the complex bilinear product of two elements of CN defined by

(
z1

1, . . . , z
1
n

) · (z2
1, . . . , z

2
n

) =∑n
k=1 z1

kz
2
k , where zi

k ∈ C.
Let X = ∑

α aαHα ∈ (S)n−1. Then the vector c0 = X̃(0) ∈ Rn is called the generalized
expectation of X and is denoted by E(X). Suppose that f : V → Cm is an analytic function,
where V is a neighbourhood of E(X). Assume that the Taylor series of f around E(X) has
coefficients in Rn. Then the Wick version f �(X) = H−1(f ◦ X̃) ∈ (S)m−1.

The Wick exponential of X ∈ (S)−1 is defined by exp�{X} = ∑∞
n=0 X�n/n!. Using the

Hermite transform we have that the Wick exponential has the same algebraic properties as the
usual exponential. For example, exp�{X + Y } = exp�{X} � exp�{Y }.

Suppose that modelling considerations lead us to consider an SPDE expressed formally
as A(t, x, ∂t ,∇x, U, ω) = 0, where A is some given function, U = U(t, x, ω) is the unknown
(generalized) stochastic process and where the operators ∂t = ∂

∂t
,∇x = (

∂
∂x1

, . . . , ∂
∂xd

)
when

x = (x1, . . . , xd) ∈ Rd . First we interpret all products as Wick products and all functions as
their Wick versions. We indicate this as

A�(t, x, ∂t ,∇x, U, ω) = 0. (2.1)

Secondly, we take the Hermite transform of (2.1). This turns Wick products into ordinary
products (of complex numbers) and the equation takes the form

Ã(t, x, ∂t ,∇x, Ũ , z1, z2, · · ·) = 0 (2.2)

where Ũ = H(U) is the Hermite transform of U and z1, z2, . . . , are complex numbers.
Suppose we can find a solution u = u(t, x, z) of the equation Ã(t, x, ∂t ,∇x, u, z) = 0 for
each z = (z1, z2, . . . , ) ∈ Kq(r) for some q, r , where Kq(r) = {z = (z1, z2, . . . , ) ∈ CN and∑

α �=0 |zα|2(2N)qα < r2}. Then, under certain conditions, we can take the inverse Hermite
transform U = H−1u ∈ (S)−1 and thereby obtain a solution U of the original Wick equation
(2.1). We have the following theorem, which was proved by Holden et al [8].

Theorem 2.1. Suppose u(t, x, z) is a solution (in the usual strong, pointwise sense) of the
equation (2.2) for (t, x) in some bounded open set G ⊂ R × Rd , and for all z ∈ Kq(r), for
some q, r . Moreover, suppose that u(t, x, z) and all its partial derivatives, which are involved
in (2.2), are bounded for (t, x, z) ∈ G × Kq(r), continuous with respect to (t, x) ∈ G for all
z ∈ Kq(r) and analytic with respect to z ∈ Kq(r), for all (t, x) ∈ G.
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Then there exists U(t, x) ∈ (S)−1 such that u(t, x, z) = (Ũ(t, x))(z) for all (t, x, z) ∈
G × Kq(r) and U(t, x) solves (in the strong sense in (S)−1) the equation (2.1) in (S)−1.

3. Single soliton solutions of stochastic KdV equations

In this and the next section, we will use theorem 2.1 with d = 1 to give exact solutions of
(1.1).

Taking the Hermite transform of (1.1), we can get the equation

Ũ t (t, x, z) + [g(t) + K2W̃ (t, z)][6Ũ (t, x, z)Ũ x(t, x, z) + Ũ xxx(t, x, z)]

+ 6[f (t) + K1B̃(t, x)]Ũ (t, x, z)

= x{[f ′(t) + K1W̃ (t, z)] + 12[g(t) + K2W̃ (t, z)][f (t) + K1B̃(t, z)]2} (3.1)

where the Hermite transform of W(t) and B(t) are defined by W̃ (t, z) = ∑∞
k=1

∫ x

0 ηk(s)dszk

and B̃(t, z) = ∑∞
k=1 ηk(t)zk , respectively, when z = (z1, z2, . . . , ) ∈ (CN)c is a parameter.

We first solve the equation (3.1).
For simplicity, denote F(t, z) = f (t) + K1B̃(t, x),G(t, z) = g(t) + K2W̃ (t, z) and

u(t, x, z) = Ũ (t, x, z). Suppose that the solution of (3.1) is the form

u(t, x, z) = ∂2K(ϕ(t, x, z))

∂x2
+ V (t, x, z) = K ′′ϕ2

x + K ′ϕxx + V (t, x, z)

where K = K(ϕ) is a function of one variable only, V (t, x, z) is a given solution of (3.1) for
any z ∈ (CN)c, which may be a trivial one, a constant one, and so on. For any z ∈ (CN)c,
according to the homogeneous balance principle (see [12]), using what Wang et al did in [13]
we can get the Bäcklund transformation of (3.1) as the follows:

u(t, x, z) = 2(log(ϕ))xx + V (t, x, z) (3.2)

ϕ[ϕtx + G(ϕxxxx + 6V ϕxx + 6Fϕx)] − ϕx[ϕt + G(ϕxxx + 6V ϕx)]

+ 3G
(
ϕ2

xx − ϕxϕxxx

) = 0. (3.3)

For any fixed z ∈ (CN)c, using the Bäcklund transformation (3.2) and (3.3) we can
obtain the stochastic solitary wave solutions of (3.1). Since (3.3) is nonlinear, it is difficult
to solve it in general, especially when V (t, x, z) is a general function. However, taking
V (t, x, z) = xF(t, z) for a solution of (3.3), we can solve the equation

ϕ[ϕt + G(ϕxxx + 6xFϕx)]x − ϕx[ϕt + G(ϕxxx + 6xFϕx)] + 3G
(
ϕ2

xx − ϕxϕxxx

) = 0 (3.4)

and we get the solution which is an exponential function

ϕ(t, x, z) = 1 + exp{φ(t, x, z)} (3.5)

where

φ(t, x, z) = γ xA(t, z) − γ 3
∫ t

0
G(s, z)A3(s, z) ds + x0 (3.6)

and

A(t, z) = exp

{
−6

∫ t

0
F(s, z)G(s, z) ds

}
(3.7)

where γ and x0 are arbitrary constants. Substituting (3.5) with (3.6), (3.7) and V (t, x, z) =
xF(t, z) into (3.2) yields that a single solitary wave solution of (3.1) is

u(t, x, z) = γ 2A2(t, z) exp{φ(t, x, z)}
[1 + exp{φ(t, x, z)}]2

+ xF(t, z). (3.8)
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By (3.6)–(3.8), B̃(t, z) = ∑∞
n=1 zn

∫ t

0 ηn(s)ds and W̃ (t, z) = ∑∞
n=1 ηn(t)zn for z =

(z1, z2, . . . , ) ∈ (CN)c, if we choose the bounded open set G ⊂ R+ × R, q > 0 and
|zj | < (2j)−q for all j � 1, then there exists r > 0 such that u(t, x, z), ut (t, x, z), ux(t, x, z)

and uxxx(t, x, z) are uniformly bounded for (t, x, z) ∈ G × Kq(r), continuous with respect
to (t, x) ∈ G for all z ∈ Kq(r) and analytic with respect to z ∈ Kq(r) for all (t, x) ∈ G.
Theorem 2.1 implies that there exists U(t, x) ∈ (S)−1 such that u(t, x, z) = (HU(t, x))(z)

for all (t, x, z) ∈ G × Kq(r) and that U(t, x) solves the equation (1.1). From the above, we
have that U(t, x) is the inverse Hermite transformation of u(t, x, z). Hence, by (3.6), (3.7)
and (3.8), we have that a stochastic single solitary solution of (1.1) is

U(t, x) = γ 2A�2(t, x) � exp�{�(t, x)}
(1 + exp�{�(t, x)})�2

+ x[f (t) + K1B(t)] (3.9)

where

�(t, x) = γ xA(t) − γ 3
∫ t

0
G(s) � A�3(s)ds + x0 (3.10)

and

A(t) = exp

{
−6

∫ t

0
F(s) � G(s)ds

}
. (3.11)

The following special cases are interesting:
(i) Taking f (t) = 1, g(t) = K1 = 0 and K2 �= 0, we have

∫ t

0 F(s) � G(s)ds = K2B(t),
A(t) = exp{−6K2B(t)}. exp�{B(t)} = exp

{
B(t) − 1

2 t2
}

(see lemma 2.6.16 in [8]) implies
A�(t) = exp�{−6K2B(t)} = exp{−K2(6B(t) − 3t2)} and

�(t, x) = γ x exp{−6K2B(t)} − γ 3K2

∫ t

0
exp{−9K2(2B(s) − s2)} � Wsds + x0

= γ x exp{−6K2B(t)} − γ 3K2

∫ t

0
exp{−9K2(2B(s) − s2)}δB(s) + x0.

Hence, the stochastic generalized KdV equation with the coefficient W(t)

Ut + K2W(t) � [6U � Ux + Uxxx] + 6U = 12K2xW(t) (3.12)

has the solution

U1(t, x)

=
γ 2 exp�

{
− 12K2B(t) + γ x exp{−6K2B(t)} − γ 3K2

∫ t

0 exp{−9K2(2B(s) − s2)}δB(s) + x0

}
(

1 + exp�
{
γ x exp{−6K2B(t)} − γ 3K2

∫ t

0 exp{−9K2(2B(s) − s2)}δB(s) + x0

})�2 + x.

Where the stochastic integral
∫ t

0 exp{−9K2(2B(s) − s2)}δB(s) is a Skorohod integral.
(ii) Choosing f (t) = g(t) = 0 and k12=̂K1K2 �= 0, we have∫ t

0
F(s) � G(s)ds = k12

∫ t

0
Bs � Wsds = k12

2
(B2(t) − t)

A(t) = exp{−3k12(B
2(t) − t)}

and

�(t, x) = γ x exp{−3k12(B
2(t) − t)} − γ 3k12

∫ t

0
exp�{−9k12(B

2(s) − s)}δB(s) + x0.

Hence, the stochastic generalized KdV equation with the coefficients B(t) and W(t)

Ut + K2W(t) � [6U � Ux + Uxxx] + 6K1B(t) � U

= x
[
K2W(t) + 12K1K

2
2 W(t) � B2(t)

]
(3.13)
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has the solution

U1(t, x) = γ 2e�{−6k12(B
2(t)−t)+γ x exp{−3k12(B

2(t)−t)}−γ 3k12
∫ t

0 exp�{−9k12(B
2(s)−s)}δB(s)+x0}(

1 + e�{γ x exp{−3k12(B2(t)−t)}−γ 3k12
∫ t

0 exp�{−9k12(B2(s)−s)}δB(s)+x0})�2 + B(t)x.

(iii) Taking f (t) = g(t) = K1 = 0 and K2 �= 0, we have
∫ t

0 F(s)�G(s) = 0, A(t, x) = 1
and

�(t, x) = γ x − K2γ
3B(t) + x0.

The stochastic generalized KdV equation with the coefficient W(t)

Ut + K2W(t) � [6U � Ux + Uxxx] = 0 (3.14)

has the solution

U3(t, x) = γ 2 exp� {γ x − γ 3K2B(t) + x0}
(1 + exp�{γ x − γ 3K2B(t) + x0})�2

= γ 2 exp
{
γ x − γ 3K2

(
B(t) − 1

2 t2
)

+ x0
}

(
1 + exp

{
γ x − γ 3K2

(
B(t) − 1

2 t2
)

+ x0
})�2

= γ 2 exp
{
γ x − γ 3K2

(
B(t) − 1

2 t2
)

+ x0
}

(
1 + exp

{
γ x − γ 3K2

(
B(t) − t2

)
+ x0

})2 .

4. Multi-soliton solutions of stochastic generalized KdV equations

In order to obtain general multi-soliton solutions of (1.1), as M L Wang and Y M Wang did in
[13], we use the ε-expansion method to solve the equation (3.4), that is, suppose that

ϕ(t, x, z) = 1 + ϕ(1)ε + ϕ(2)ε2 + ϕ(3)ε3 + · · · (4.1)

where ϕ(k) (k � 1) to be undetermined, ε is a parameter (for simplicity, we may take ε = 1).
Substituting (4.1) into (3.4), collecting all terms with the same order in ε together and setting
each coefficient of εk (k � 1) to zero, yields a hierarchy of equations for ϕ(k) (k � 1), and
solving this hierarchy of equations for ϕ(k) to get an exact solution of (3.4) in the form:

ϕ(t, x, z) = 1 +
N∑

k=1

φk +
∑
i �=j

aijφiφj +
∑

i �=j �=k

aij lφiφjφk + · · · + a12···N
N∏

k=1

φk (4.2)

where

φk(t, x, z) = exp

{
γkA(t, x, z)x − γ 3

k

∫ t

0
G(s, x, z)A3(s, x, z)ds + xk

}
(4.3)

where A(t, x, z) is expressed by (3.7), γk, xk, ak, aij , . . . , a12···N are arbitrary constants, N is
a positive integer. Substituting (4.2) with (4.3) and V (t, x, z) = xF(t, z) into (3.2) yields the
stochastic N-soliton solution of (3.1)

u(t, x, z) = 2(log(ϕ(t, x, z)))xx + xF(t, z) (4.4)

which represents the interaction of stochastic N-solitary waves for any z ∈ (CN)c.
As in the stochastic one-soliton solution case, using theorem 2.1, (4.2), (4.3) and (4.4) we

have that the stochastic N-soliton solution of (1.1) is

U(t, x) = 2(log�(�(t, x)))xx + xF(t) (4.5)
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where

�(t, x) = 1 +
N∑

k=1

�k +
∑
i �=j

aij�i � �j +
∑

i �=j �=k

aijk�i � �j � �k + · · · + a12···N
�N∏
k=1

�k (4.6)

and

�k(t, x) = exp�
{
γkA(t, x)x − γ 3

k

∫ t

0
G(s, x) � A�3(s, x)ds + xk

}
. (4.7)

As an illustrative example we will give detailed discussion in the case N = 2. Taking

ϕ(1)(t, x, z) = φ1(t, x, z) + φ2(t, x, z)

as the discussion of M L Wang et al in [13] we have

ϕ(2)(t, x, z) = (γ1 − γ2)
2

(γ1 + γ2)2
φ1(t, x, z)φ2(t, x, z)

and ϕ(k)(t, x, z) = 0 for k = 3, . . . , N . If we choose ε = 1, (4.2) yields that the solution of
(3.4) is the following:

ϕ(t, x, z) = 1 + φ1(t, x, z) + φ2(t, x, z) +
(γ1 − γ2)

2

(γ1 + γ2)2
φ1(t, x, z)φ2(t, x, z). (4.8)

Substituting (4.8) and V (t, x, z) = xF(t, z) into (3.2) we get the exact solution of (3.1)

u(t, x, z) = 2A2(t, x, z)
γ 2

1 φ1 + γ 2
2 φ2 + 2(γ1 − γ2)φ1φ2 + α12

(
γ 2

2 φ2
1φ2 + γ 2

1 φ1φ
2
2

)
(1 + φ1 + φ2 + α12φ1φ2)2

+ xF(t, z)

where α12 = (γ1 − γ2)
2/(γ1 + γ2)

2, which represents the interaction of two solitary waves for
any fixed z ∈ (CN)c. Hence, by using the inverse Hermite transformation, we have a stochastic
2-soliton solution of (1.1) in the following

U(t, x)

= 2A�2(t, x) � γ 2
1 �1 + γ 2

2 �2 + 2(γ1 − γ2)�1 � �2 + α12
(
γ 2

2 ��2
1 � �2 + γ 2

1 �1 � ��2
2

)
(
1 + �1 + �2 + α12�1 � �2

)�2 + xF(t).

In a similar manner we can get similar results for equations (3.12)–(3.14), respectively.
(i) An exact solution containing 2-solitary stochastic wave of (3.12) is

U1(t, x)

= 2A�2
1 (t, x) � γ 2

1 �1
1 + γ 2

2 �1
2 + 2(γ1 − γ2)�

1
1 � �1

2 + α12
(
γ 2

2

(
�1

1

)�2 � �1
2 + γ 2

1 �1
1 � (

�1
2

)�2)
(
1 + �1

1 + �1
2 + α12�

1
1 � �1

2

)�2 + x

where

A1(t) = exp{−6K2B(t)}
and

�1
i (t, x) = exp�

{
γixe−6K2Bt − γ 3

i K2

∫ t

0
e−9K2(2B(s)−s2)δB(s) + xi

}
i = 1, 2,

x1 and x2 are any constants.
(ii) An exact solution containing 2-solitary stochastic wave of (3.13) is

U2(t, x)

= 2A�2
2 (t, x) �

γ 2
1 �2

1 + γ 2
2 �2

2 + 2(γ1 − γ2)�
2
1 � �2

2 + α12

(
γ 2

2

(
�2

1

)�2 � 2�2
2 + γ 2

1 �2
1 � (

�2
2

)�2
)

(
1 + �2

1 + �2
2 + α12�

2
1 � �2

2

)�2 + xB(t)
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where

A2(t) = exp{−3k12(B
2(t) − t)}

and

�2
i (t, x) = exp�

{
γixe−3k12(B

2(t)−t) − γ 3
i k12

∫ t

0
e−9k12(B

2(s)−s)δB(s) + xi

}
i = 1, 2.

(iii) An exact solution containing 2-solitary stochastic wave of (3.14) is

U3(t, x) = 2
γ 2

1 �3
1 + γ 2

2 �3
2 + 2(γ1 − γ2)�

3
1 � �3

2 + α12
(
γ 2

2

(
�3

1

)�2 � �3
2 + γ 2

1 �3
1 � (

�3
2

)�2)(
1 + �3

1 + �3
2 + α12�

3
1 � �3

2

)�2

where

�3
i (t, x) = exp

{
γix − γ 3

i K2

(
B(t) − 1

2
t2

)
+ xi

}
i = 1, 2.

Remark. Since there is a unitary map between the Wiener white noise space and the Poisson
white noise space, we can obtain the solution of the Poissonian SPDE simply by applying
this map to the solution of the corresponding Gaussian SPDE. A nice, concise account of this
connection was given by Benth and Gjerde in [1]. We can see section 4.9 of [8] also. Hence,
we can get stochastic single and multi-soliton solutions as we do in section 3 and section 4 if
the coefficient f (t) is perturbed by Poissonian white noise in (1.2).
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